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Abstract-Quasi-static indentation of brittle materials with a spherical indenter produces Hertzian
cone cracks. The variation of cone crack length with load is measured by indenting soda-lime glass
blocks with a 3.17 mm diameter hardened steel ball and photographing the cracks through a side
face of the blocks. Assuming that the contact pressure distribution is Hertzian, axisymmetric
boundary elements are used to accurately calculate stress intensity factors along the front of the
cone crack by adapting the modified crack closure integral. The boundary element results are
verified through comparisons with finite element calculations and prior results in the literature. The
Mode I stress intensity factor is found to be a positive monotonically decreasing function of cone
crack length, provided that the contact radius is not greater than the cone crack radius at the
surface. Calculations using the Hertzian pressure distribution predict that the cone crack will arrest
when the contact radius is greater than the cone crack length at the surface. However, experimental
observations suggest that as the contact radius approaches the cone crack radius at the surface,
interaction effects lead to a non-Hertzian pressure distribution. Detailed finite element contact
mechanics of the actual cracked body are used to show that the contact pressure is singular at the
edge of contact once the contact radius becomes equal to the cone crack radius. Furthermore, cone
crack growth continues even when contact between the indenter and the cracked body occur outside
of the cracked region, which is consistent with experimental observations. This latter aspect of cone
crack growth cannot be predicted on the basis of a Hertzian pressure distribution.

I. INTRODUCTION

Indentation fracture of brittle materials generated by spherical and pointed (i.e. cone,
Vickers, Knoop) indenters has been the focus of much research. Interest in this problem
stems from the role of indentation-induced flaws in controlling the strength of brittle solids,
and from the use of indentation techniques to measure fracture surface energy and fracture
toughness of brittle solids. In addition there is recent evidence that indentation fracture can
be used to model material removal during finishing of ceramics (Chauhan et al., 1993).
Indentation by spheres is commonly referred to as Hertzian indentation after Hertz, who
originally calculated the relevant pressure distribution under the indenter. Hertzian inden
tation of brittle materials leads to Hertzian ring and cone cracking. Figure 1 describes the

Z
Fig. I. Schematic view of cone cracking showing spherical steel indentation of glass block; cone

crack length I; half-apex angle, IX; Hertz contact radius, au; cone crack radius at surface, a.
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typical Hertzian cone crack geometry and defines the following parameters: cone crack
length, I; half-apex angle, 0:; cone crack radius at the surface, a (ring crack radius) ; and
contact radius calculated using the Hertzian assumptions, ao. The term "ring crack"
describes the circularly shaped crack that initially forms at this surface and which after a
small amount of growth perpendicular to the surface, 'pops' into the well-developed cone
crack. Hertzian indentation of brittle materials and the cone cracks that it produces are the
focus of this paper.

Tillett (1956) and Roesler (1956a,b) detail numerous historical observations of ring
cracking being visible once the surface tensile stress is much greater than that required for
fracture in bulk tensile test specimens. This has been attributed to the small volume acted
upon by the contact-induced tensile stress. While the maximum tensile stress induced by
frictionless Hertzian contact is known to occur just at the edge of the contact patch, ring
cracks have been observed to form outside of the radius of contact predicted by Hertz
(Tillett, 1956; Chaudhri and Yoffe, 1981). Also, it has been observed experimentally when
indenting fused silica and sapphire with hard spheres that the contact radius is greater than
that predicted by Hertz (Chaudhri and Yoffe, 1981). Johnson et al. (1973) have shown
from a stress analysis, which considered the elasticity of the indenter, that the actual location
of the maximum tensile stress indeed may lie just outside the contact patch.

Frank and Lawn (1967) investigated the development of the cone crack from the ring
crack in the strongly inhomogeneous Hertzian stress field. They approximately calculated
the Mode I stress intensity factor at the cone crack front by modeling it as a two-dimensional
plane strain crack in an infinite medium loaded by the stresses acting on the location of the
cone crack in the corresponding uncracked body. It was assumed that the inclined sides of
the cone crack followed trajectories of the minimum principal stress so that it was per
pendicular to the maximum principal stress. This model predicts that the crack propagation
arrests at a depth which is related to the applied load.

Warren (1978) used a similar two-dimensional approximation and considered the effect
of ring crack initiation some distance outside of the circle of contact. The model was
combined with experiments to measure the fracture toughness of carbides based on the
initiation of the ring crack. Warren (1978) concluded that the reliability of interpretation
could be improved by a more sophisticated fracture mechanics analysis. Mouginot and
Maugis (1985) also used the two-dimensional approximation to analyze cracks generated
by both spheres and flat punches. Zeng et al. (1992) combined a similar approach with
measurements to obtain the fracture toughness of soda lime glass and obtain values that
are load independent and reasonably consistent with values for KIc determined by other
means. None of the above analyses included the effect of the actual crack shape and its
interrelation with the free surface in the calculation of the stress intensity factors.

The mixed mode stress intensity factors for the Hertzian cone crack subjected to
Hertzian contact pressures have been fully analyzed numerically only recently by Yingzhi
and Hills (1991). A global-local finite element method was used, and effects of the free
surface and the curved nature of the crack front were included in the analysis. Yingzhi and
Hills (1991) found that the mode II stress intensity factor was about one tenth of the mode
I stress intensity factor. Recent boundary element calculations by Chen et al. (1993) have
yielded stress intensity factors within 3% of the FEM calculations of Yingzhi and Hills
(1991). These stress intensity factor calculations show that when the contact pressure is
applied to a patch of radius larger than the radius of the cone crack at the surface, the
mode I stress intensity factor is zero and cone crack growth is arrested.

In the present study, soda-lime glass blocks are indented with a hardened steel sphere.
The variation of the cone crack length with applied load is determined experimentally by
observing the blocks through their sides while the load is still applied. The predicted
variation of cone crack length with applied load, calculated by assuming that the Hertzian
pressure distribution remains unaffected by the presence of the crack, is compared with the
experimental measurements. The comparison shows that the pressure distribution is non
Hertzian for fully developed cone cracks. This result motivates the following finite element
calculations that detail the actual pressure distribution, which is then used to predict the
variation of cone crack length with load. The analysis shows that when the contact radius
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Fig. 2. Schematic of in situ observation of indentation cracking.

predicted by Hertz is larger than the cone crack radius at the surface, the load is carried in
part by the resulting singularity in the contact pressure at the edge of contact. Indeed, the
order of such singularities was investigated in detail by Professor Dundurs (Dundurs and
Lee, 1972) who showed that it could be written explicitly in terms of Dundurs' parameters.
As the load is increased further it is found that contact also occurs just outside of the
cracked region and the cone crack continues to grow.

2. EXPERIMENTAL DETAILS

Soda-lime glass blocks, 5 x 5 x 1.25 cm and devoid of residual stress, were indented by
a hardened steel sphere of diameter 3.17 mm. The relevant mechanical properties (typical
values) for these materials were: Young's modulus, E = 200 GPa, and Poisson's ratio,
v = 0.25, for steel; E = 69 GPa, v = 0.23, tensile strength, O"F = 100 MPa, and fracture
toughness, KIc = 0.75 MPa;; for soda-lime glass. The blocks were polished to an optical
surface quality prior to indentation.

In a typical indentation experiment, the indenter, which was attached to the cross
head of an MTS testing machine (MTS model 458.20), was loaded against the 1.25 x 5 cm
face of the block. The cross-head speed when indenting the glass block was 0.1 mm min-I.
During loading and unloading, the indenter and the block were observed using an optical
microscope and photographed through the top and side faces of the block, see Fig. 2.
Particular attention was paid to observing the evolution of the cone crack length as the
indenter load was increased.

From microscopic observations and photographs of the cone crack (see Fig. 3) and
measurements of the indenter load, the variation of cone crack length with applied load
was determined (Fig. 4). The cone crack length was found to increase monotonically with
the applied load.

A photograph of the top view of the cone crack taken after the indenter was unloaded
is shown in Fig. 5. The axisymmetric geometry and loading leads to the assumption that
the fully developed cone crack grows in a self-similar manner, thereby allowing for an
axisymmetric analysis. In all likelihood, the ring crack initiates at a point flaw which is
most certainly not axisymmetric and grows quickly into an axisymmetric shape due to the
axisymmetric stress field. The following analysis concerns self-similar growth following
formation of an axisymmetric ring crack and its "pop-in" into a well-developed cone crack.
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Fig. 4. Experimental and predicted cone~ crack length for 3.17 mm (0.125 in) ball indentation on
glass using IX = 62°,

3. ANALYSIS

3.1. Finite element details
The finite element calculations are performed with ANSYS. t A combination of three

noded triangular and four-noded quadrilateral axisymmetric elements are used to model
both the steel indenter and the glass specimen. The lower half of the indenter is modeled
with loads applied through vertically displacing the horizontal diametrical circle. The total
number of elements used depends on the cone crack length, radius and angle, as well as
upon the indenter radius. Approximately 2000 elements were used for each material body.
A typical complete finite element mesh and details of the near contact are shown in Figs 6
and 7.

Axisymmetric, frictionless point-to-surface contact elements are used to model the
interaction between the lower surface of the indenter and the top surface of the specimen.
These elements require one node on the surface of one body and two nodes on the surface
of the remaining body. The contact elements ensure that the contact pressure is positive
inside the contact patch and zero outside of contact and that there is no interpenetration
of the two bodies. The applied load is simulated by gradually increasing the uniform
displacements along the top boundary of the half-spherical indenter. The contact radius,
i.e. the radius of the projected circle over which the indenter and block are in contact, is
calculated through iteration at each load step. The iterative procedure assumes a contact
radius and calculates the contact pressure, regions of assumed contact having negative
pressure are removed from contact, and regions outside of contact exhibiting inter
penetration are added to contact before the next iteration. Convergence on the contact
radius occurs once all inequalities are satisfied. Similar contact elements are used between
the faces of the crack to inhibit interpenetration.

The strain energy release rate, defined as the energy released per unit area of crack
growth, is given by

(1)

(2)

where G1 and GIl are the mode I and mode II strain energy release rates, respectively, i1A is
the crack extension area, (u;; - u;) and (ut -un are the total normal and tangential crack
opening displacements, respectively, and O'n and 't are the normal and shear stresses ahead
of the crack.

t ANSYS, a product of Swanson Analysis Systems, Inc., Houston, PA, was made available through an
academic license to Purdue University.
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Fig. 3. Side view of cone crack in soda-lime glass.

Fig. 5. Top view of cone crack in soda-lime glass.
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Fig. 6. Finite element mesh.
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Strictly speaking, the stresses, lTn and 1'( are those existing ahead of the crack tip before
crack extension and the displacements are those behind the crack tip after crack extension,
so that the products in eqns (1) and (2) are taken for quantities at exactly the same position
in space. The exact evaluation of eqns (1) and (2) requires FEM data for two different
crack lengths. However, since the displacements just behind the crack tip both before and
after a small crack extension are almost equal, eqns (1) and (2) can be approximated by
using the stresses and displacements for one crack length. This approximation, known as
the modified crack closure integral, has been used successfully in two-dimensional finite
elements (Rybicki and Kanninen, 1977) and boundary elements (Farris and Liu, 1993).

Fig. 7. Finite element mesh near contact.
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Fig. 8. Nodes and elements near the crack tip used in modified crack closure integral.

The modified crack closure integral is evaluated using four-node finite elements in terms of
nodal displacements and forces as

(3)

(4)

where the superscripts refer to the nodal values illustrated in Fig. 8, and Fn and Ft are the
normal and tangential nodal forces respectively, due to elements on one side of the line
containing the crack. Finally, stress intensity factors are calculated from the strain energy
release rates as

(5)

3.2. Stress intensity factors due to applied pressure
The FEM stress intensity factor calculation is validated through comparison with

previous results ofYingzhi and Hills (1991). For this calculation, the loading is taken as a
Hertzian contact pressure distribution given by

where

(6)

3P
Po =-22'

nao

_ (3PR)1/3
ao - 4E* '

R is the radius of the indenter, ao is the radius over which the pressure is applied (recall
Fig. 1), and the subscripts sand g refer to steel and glass, respectively. Figure 9 shows the
calculated stress intensity factors obtained using the present FEM results with the modified
crack closure integral, as well as the global-local FEM results ofYingzhi and Hills (1991).
The two results differ by less than 3%. Chen et al. (1993) have also recently used axi
symmetric boundary element calculations to validate the present FEM results.

The cone crack angle used in Fig. 9 is within the range of angles commonly observed
in experiment. Many investigations have assumed that the crack grows perpendicular to
the maximum principal stress corresponding to Hertz contact in the uncracked media.
These trajectories predict that the initial ring crack would form perpendicular to the
surface before turning to grow at an angle into a cone crack. Since the length of growth
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Fig. 9. Stress intensity factors for cone crack subjected to a Hertzian pressure distribution, llao = I,
alao = 1.05.

perpendicular to the surface is usually small, the cone crack has been modeled as growing
along a straight line, which is inclined at an angle of 62° with the normal to the surface.
The largest tensile stress in the body occurs just at the edge of contact such that

1-2v
(Jr(ao, 0) = -3-Po· (7)

In many instances, ring cracks are observed to occur when this stress is as high as 10 times
the manufacturer's reported values of 100 MPa for the tensile strength of soda-lime glass
blocks. Hence, as the load is applied, ring cracks should occur just at the edge of contact.
However, Johnson et al. (1973) have shown from a stress analysis, which includes the effect
of indenter elasticity, that the location of the maximum stress may occur just outside of the
contact such that r > ~ a, Z = O. This is consistent with some observations of the location
of ring crack occurrence (Zeng et aI., 1992). As the crack follows the stress trajectory during
growth, it will continue to have a positive mode I stress intensity factor.

Chen et al. (1993) used boundary elements to quantify one feature of the growth of
the ring/cone crack system that one might assume using knowledge of the subsurface
Hertzian stress field. When a ring crack forms at the surface and does not propagate into
a well-developed cone crack, then as the indenter load is increased, the ring crack eventually
will be encompassed within the circle of contact. This is based on the assumption that the
presence of the ring/cone crack does not affect the pressure distribution. Under such
conditions, the stress intensity factor calculation illustrated in Fig. 10 shows that the growth
of the ring crack into the sub-surface will be arrested. The negative mode I stress intensity
factors are physically not realistic, but indicate that for this configuration the crack would
close and crack growth would be arrested. The results in Fig. 10 also illustrate that for a
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Fig. 10. Normalized stress intensity factors for Hertzian cone cracking, IX = 62°, v = 0.23,
a = 0.25 mm. The FEM curves are for the contact problem while the BEM curves taken from Chen

et al. (1993) are for the corresponding Hertzian pressure distribution.
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given contact size, the stress intensity factor decreases with increasing cone crack length
when the ring crack size is larger than the contact size.

4. THE CONTACT PROBLEM

Experimental observations (Tillett, 1956; Benbow, 1960) indicate that the cone crack
continues to grow under increasing load even when the contact radius, as predicted by a
Hertzian analysis of the uncracked solid, is greater than the radius of the cone crack at the
surface. This contradicts the prediction of the stress intensity factor calculation of the
previous section, which suggests that the crack should stop growing once the contact radius
exceeds the radius of the cone crack at the surface. It is this fact that motivated the present
contact mechanics analysis of Hertzian cone cracking.

The contact problem to be solved is shown in Figs I and 6. A cone crack of length t,
semi apex angle IY., and radius at the surface a is assumed to exist in the glass block. The
steel ball is brought into contact with the glass block by incrementally displacing its
horizontal diametrical circle. A 3.17 mm diameter ball is used in all of the FEM calculations.
The contact radius, contact pressure distribution, and total applied load is calculated at
each increment. The total load is calculated by summing the nodal forces for nodes in
contact. Accuracy of the contact elements and accompanying algorithm is assessed by first
removing the cone crack. Results for this case are compared to Hertzian theory (eqn 6) in
Fig. 11. The contact pressure calculated on the surface of the sphere by ANSYS is reported
except where the nodal forces are zero, at which location the pressure is reported as zero.
The excellent agreement between FEM and Hertz theory (Fig. 11) provides confidence for
the following calculations.

Cone crack radii at the surface used as inputs to the finite element program were
chosen in the range of experimentally estimated radii (0.15-0.25 mm). These radii are
difficult to measure accurately, in part due to the damage caused by the indentation
illustrated in Fig. 5. The half-apex angle (IY.) of the cone crack is taken as 62° in the finite
element model.

The solution to the full contact problem is illustrated through the example shown in
Figs 12-14. Figure 12 shows a case in which the contact radius is less than the radius of the
cone crack at the surface. Note that the pressure distribution is well approximated by the
Hertzian pressure distribution given by eqn (6). Figure 13 corresponds to a case in which
the contact load is just large enough for the contact radius to equal the radius of the cone
crack at the surface, while Fig. 14 illustrates a case in which the load is increased well
beyond the value for which the contact radius is equal to the radius of the cone crack. Note
the singular nature of the pressure distribution at the edge of contact in Fig. 14. This
pressure distribution is significantly different from that calculated assuming a Hertzian
pressure distribution. The stress intensity factors corresponding to the full solution to the
contact problem are shown in Fig. 10. In particular it can be seen that when the Hertzian
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Fig. 14. Contact pressure distribution including cone crack interaction effects P = 1200 N,
aD = 0.297 mm, a = 0.25 mm, I = 2 mm.

contact radius is greater than the cone crack radius at the surface, the contact problem
yields positive stress intensity factors, while the Hertzian pressure distribution does not.

The above interaction between the cone crack and the contact pressure distribution is
to our knowledge unreported in the literature. Previous investigations which have assumed
a Hertzian pressure distribution conclude that the cone crack will cease to grow once the
contact radius exceeds the radius of the cone crack at the surface (Lawn, 1993). However,
the finite element calculations clearly show that the pressure distribution deviates from the
Hertzian distribution as the contact radius reaches the cone crack radius at the surface.
Furthermore, cone crack growth continues even when contact occurs outside the cracked
region. Thus the cone crack will continue to grow stably as the load is increased, a fact
which is consistent with experimental observations.
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If it is assumed that crack growth occurs when the stress intensity factor is greater
than the fracture toughness, then the cone crack length can be predicted as a function of
load. The predicted values using the full contact problem solution are shown in Fig. 4 for
different assumed radii of the cone crack at the surface. The predicted values are reasonably
close to those measured experimentally. Since the radius of the surface trace of the ring/cone
crack is difficult to measure experimentally, the predictions are made for a range of these
radii. It is found that the predicted crack length decreases as the radius of the cone crack
at the surface increases. The different estimates of the ring crack radius do not significantly
change the prediction of the cone crack length.

5. CONCLUSION

The relationship between the Hertzian cone crack length and the indentation load in
soda-lime glass has been measured and predicted using axisymmetric finite elements. The
full solution to the contact problem shows that there are singularities in the pressure
distribution when the contact radius reaches or exceeds the cone crack radius at the surface.
Moreover, cone crack growth continues even when contact occurs outside of the cracked
region. The estimated cone crack length vs load relationship reasonably agrees with exper
imental values for the load range in which the cone crack is fully developed. The assumption
of the initial ring crack radius has only a small effect on the stress intensity factor calculation.
Thus, the elastic contact problem that includes the interaction between the cone crack and
the contact pressure accurately predicts cone crack growth over a wide load range.

In summary, the main conclusion of this paper is that the interaction between cone
cracking and the contact pressure distribution must be included to explain the growth of
fully developed cone cracks.
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